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ON UNIQUEN}.S IN THE THEORY OF PLASTICITY*

By

D. C. Drucker (Brown University)

Surmnar y

The fundamental definitions of work-hardening and perfect

plasticity have far reaching implications with respect to unique-

ness of solution for elastic-plastic bodies, Satisfaction of

the basic postulate, that in a cycle work cannot be extracted

from the material and the system of forces acting upon itt

guarantees an existing solution to be stable but not necessarily

uniqueb Uniqueness follows for the usual linear relation between

the increments or rates of stress and strain and also for com-

binations of such linear forms. Uniqueness is assured for

incrementally non-linear stress-strain relations by simple and

reasonable restrictions, Conversely, lack of uniqueness results

for an elastic-perfectly plastic body when, for example, the

maximum shearing stress criterion of yield is employed with the

Mises flow rule.

The results prescnted in this paper wore obtained in the
course of research sponsored by the Office of Naval Research
under Contract N7onr-35801 with Brown University.

This note is a more formal presentation of a talk given at
the Applied Mathematics Seminar of the Univorsity of London
November 1954.

** Chairman, Division of Engineering.
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Uniauenegsi [1][2[ 3]f[4]*

Plastic stress-strain relations for work-hardening

materials are strongly path dependent. It is, therefore, not

reasonable to expect that a given set of final boundary values

will give a unique solution for stress and strain in the interior

of a body. A complete specification of the history of the applied

surface tract>ons, body forces, an(, surface displacements will

generally be required. It is simpler then to speak of a body

under existing surface tractions Ti, body forces Fi, displace-

ments uis stresses dip3 and strains sue The question is then
I I

whether the stress and strain rates) 6i and e are determined

uniquely by the rates of change of the applied forces and

displacements Ti, Fi, and uit

The terminology of plasticity is developing continually

and is much a matter of individual preference. A brief des-

cription therefore will be given of sonic of the terms and

concepts employed hcre. The state of stress dij at a material

point of the body may be represented by a point dij plotted in

a stress space. Coordinates of the point are the components of

stress. The vector from the origin to the stress point is called

the stress vector. If, for example, the normal stresses dx and

dy are the only non-zero components of stress, the familiar

two-dimensional plots of Figs. 1 and 2 are useful. In general

there are nine components of stress, six of which are independent

Numbers in brackets refer to the Bibliography tt the end of
the paper.
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because cross shears are equal di, = dJ,* The general stress

space is nine-dimensional and is shown symbolically as in Fig. 3,

When the stress at a material point changes, the stress

point moves about in stress space. The region in which only

elastic changes in strain occur is bounded by a surface called

the yield surface. Figures 1 and 2 show the two most commonly

assumed yield criteria. For a work-hardening material) a change

in stress which causes the stress point to move outside the

existing yield surface is termed loading. Both plastic and

elastic deformation will be produced and a new yield or loading

surface will be established. Subsequent yield surfaces need not

resemble the original in appearance. Again, changes in stress

which move the stress point about inside the region bounded by

the new surface will cause elastic changes only in strain.

Perfect plasticity is a limiting case of work-hardening. The

yield surface is fixed in stress space as the material cannot

carry stresses "above" yield, The stress point may not move

outside the surface and plastic deformation will occur for

points on the yield surfaces

If strain coordinates are superposed on the correspond-

ing stress coordinates, the strain rate may be exhibited as a

free vector on the same diagrams. It is generally desirable
I

to place the strain ratu vector ei at the stress point dii to

emphasize that the strain rate is associated with both d ij and

d 1J For convenience and simplicity the plastic component of

the strain rate, eIj, alone will be plotted. The scalar
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product of the stress vector and the plastic strain rate vector

eIP is rate of plastic work or energy dissipation.iJ ij

Consideration of a homogeneous state of stress and

strain in a plane and the Tresca yield criterion with its

associated flow rule, Fig. 1, illustrates the well known fact

that too much should not be expected in the way of uniqueness.

At point A, many plastic strain rates e IP are associated with

a given state of stress [5]. On side ABI many states of stress

are associated with a given plastic strain rate. Any such lack

of uniquoncss in the small will show up in the study of unique-

ness in general.

Uniqueness proofs ordinarily follow a standard pattern

[1) - [4] which will be reviewed briefly before introducing a

new point of view. Two solutions a and b are assumed; aiJ

oand b I bl corresponding to Ti on the boundary AT, to
I iii !

u i on the remaining boundary Au, and to Fi in the volume v.

The theorem of virtual work is then employed (repeated indices

denote summation):

fA TiuidA + Fuidv = % i0ijdv. ()

The starred quantities are related through equilibrium and the

unstarrod aro compatible. There necd be no relation betwcon the

two sets of quantitics. The difference bctween thu two assumed

states a and b, thereforc, can bo substituted in Equation (1)

although a -I bd' may not produce a1 6 b' Substitution
iJ i iJ

gives



All-116

0a01 bd II 3[. bet dv (2)

[a b b. ' b I
because T = Ti on AT1 Ui = ui on Au and b= Fi ,

If it can be shown that the integrand in (2) is positive

definite, uniqueness is proved to the extent at least of either

dij or e i having but one possible value at each point of the

body. In what follows, the term uniqueness will be used without

qualification. As a first step, the strain rates are ordinarily

decomposed into their elastic and plastic portions

I = pie + 'P (3)

iiij ii i

and the integrand is written

a t  b. ae e
dij- d] a ij "a bd i ][a 1 pi  - b 8 j .(4)

The first term is positive definite for both linear and non-

linear elasticity. If then the second term is positive or zero,

uniqueness is established. For a rigid-plastic material the

first term is identically zero and this sufficiency proof requires

the second term to be positive when a 0 1 bit or aB e
dii ii i

At this stage it seems appropriate to introduce the

alternative point of view which avoids all mathematics for a

wide class of stress-strain relations.

Mechanical-Thernodynamic Postnlate

The fundamental dufinition of a work-hardening material

which has been advanc' cd proviously [5][6] is that over a cycle

no work can be extracted from the material and the system of
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forces acting upon it. An alternative and more precise set of

statements refers to an external agency which applies and removes

a set of forces to the already loaded body. The external agency

must do positive work during the application of force. Over the

cycle of application and removal of force the work done by the

external agency must be positive if plastic deformation occurs

and will be zero if elastic changes only take place. The defini-

tion covers the usual theories and any theory of plasticity

based upon a work-hardening mechanism. Slip theory of Batdorf

and Budiansky [7] which is based upon a work-hardening shear

mechanism$ or polycrystalline theory based upon single crystals

which individually satisfy the work-hardening requirement [8]

are good examples.

The definition for an ideally or perfectly plastic body

is similar but the work done by the external agency may be zero

when plastic deformation takes place.

It follows from consideration of a homogeneous state of

stress that the yield and subsequent loading surfaces are convex

and that the plastic strain rate vector is normal to such sur-

faces at a smooth point or lies between adjacent normals at a

corner [5], Figs. 1, 2. These results may be stated in mathe-

matical form, see Fig. 3, as

j- oij)eS 0(

Jei I  0 (work-hardening)

0 (perfectly plastic) (6)
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The equality sign in (6) applies to a work-hardening material

only for the trivial case of si' O.

Permissible Stress Paths and A Uniguenegs Proof

Satisfaction of the basic thermodynamic postulate leads

inevitably to convexity of the yield and subsequent loading

surfaces and also to generalized normality of ei1, These results

must be obtained no matter how elaborate or how simple the sub-

sequent physical reasoning and mathematical development. The

postulate might seem also to be powerful enough to insure unique-

ness.

According to the concept of work-hardening or of elastic-

perfectly plastic bodies, the external agency must do work to

change one stress state in a body to another* In other words,

constant external forces cannotlin themselves, provide the

necessary addition to the sum of the stored and dissipated

energy. This does give a certain type of uniqueness. If a

state of stress is attained at a given system of loads, it is

stable, Solutions for elastic-perfectly plastic bodies are

therefore unique. However, uniqueness of solution for work-

hardening bodies is more general. Stability does not necessarily

rule out the possibility of two different states being reached

as the external loads arc changed by very small increments.

There need not be any permissible path between the two states

corresponding to no change in load. In a sense an insurmountable

local energy barrier may exist.

If$ however, the system is truly linear in the increments
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or rates of force, displacement, strens and strain a permissible

path does exist. A combination of two alternative solutions

would also be a solution. The stability and the uniqueness

questions are the same. Thus the fundamental postulate insures

uniqueness for linear and non-linear elasticity,

The incremental linearity of the usual plasticity theory

and the extended incremental linearity obtained by combinations

of linear forms [4][10] are obviously not linearity in the true

sense. Plastic action is an irreversible process. Coefficients

appuaring in the linear expressions relating the rates of stress

to the rates of strain depend upon whether the stress changes

produce elastic-plastic strain or purely elastic changes. There

will be variation from point to point of the body for this

reason as well as for the more usual ones applicable to the

plastic strain rates, Similarly the differences in strain rates

between the two assumed solutions a and b will be related linearly

to the differences in the stress rates. The coefficients will

vary from point to point in the body depending now upon both

solutions*

A pseudo-material may be defined with the same linear

incremental stress-strain relations which apply to the difference

between a and b but with the added physically improper assumption

of reversibility. The question of uniqueness for the real

material is then replaced by a question of stability of solution

for the pseudo-material.

The work done by the extcrnal agency in going from a to
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b is the same as for b to a for this pseudo-materials A per-

missible path from a to b or ] to a always does exist, in, an

extended sense, in the actual material Fig, F. The work done

by the external agency, therefore, is positive at each point,

Two solutions cannot exist for the pseudo-material and uniqueness

follows for the real material. It should always be kept in mind

that uniqueness may be limited by conditions as in Fig. 1 and

that rates of change of overall geometry are assumed negligible.

The preceding paragraphs are a proof, in words, that the

fundamental postulate does insure uniqueness for the linear

incremental theories of plasticity which enjoy such popularity

and for the more recent type of theory which employs combinations

of incrementally linear mechanisms [1 ]£7] £8 ](9(10 ],

A return to the more conventional uniqueness proof will,

perhaps, help to clarify the considerations of irreversibility

and permissible path. An infinitesimal time may be taken to

elapse for each of the two assumed stress rates separatelyo The

state of stress at a point in the body will change from the

existing stress d., to the stress points a or b depending upon

which assumed alternative solution is followed. Some typical

examples are drawn in Fig. 4. If a and b are both elastio

changes, Fig, 4a, expression (4) is positive. If 3 is elastic

and a is elastic-plastic, Fig. 4b, the second term of expression

(4) is positive from (5) and (6) and the entire expression is

positive. Reversing a and b doQis not alter this result. When

a and b both represent elastic-plastiochanges, Fig. 4c9 and the

incremental relation is linear
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tpI
elp d (7)

ij iftk,

the difference between a and b will satisfy (6) and (4+) will be

positive definite. The coefficients HijkZ are functions of

stress and may depend upon the strain and the history of loading

(12)

It is instructive here to look at the difference between

states a and b from the point of view implied by the fundamental

definition of work-hardening. Call the infinitesimal time unity

so that the two assumed states of stress are o + d andi +  ia
b a I

0 ij + dj6' The corresponding strains are e + e j and

b . It may be possible to go from strain state b to

strain state a by going in a straight line in space space from

to a, The step ad - bd may be considered then as applied

by an external agency which produces the corresponding strain

al- bet The fundamental postulate then gives
ij ij

[ad S  bi' I )a ' b'[ -[ lJ IS > o(8)

and uniqueness is established, Figures 4a and 4b are evidently

in this category as is 4c if the linearity relation (7) applies.

Note, however ) that all paths are not permissible, In Fig. 4b,

for example, the path must go from the elastic to the elastic-

plastic domain. It will generally be true that for some regions

of the body the permissible path will be from b to a and for

other regions for a to b.

If a corner exists ts at A of Fig. l Fig. 4d, and the

assumption is made that two or more independent linear mechanisms
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operate) uniqueness again follows in an obvious way by treating

separately the strain components each mechanism produces, Here

the.path may be from a to b for one component and b to a for

another*

As can be seen, the permissible paths are somewhat

peculiar and linearity has a rather unusual meaning in incremen-

tal plasticity theory. The pseudo-material which is linear and

reversible has no physical validity. Nevertheless, satisfaction

of the fundamental work-hardening requirement plus incremental

linearity in the ordinary or extended sense insures the develop-

ment of a stress-strain relation which will give unique solutions.

If the stress-strain relation is incrementally non-linear

[5], the fundamental definition assures stability of solution.

However, inequality (8) does not necessarily hold because there

is no stress path from b to a in the neighborhood of OiJ which

will take the strain statc k to the strain state a or vice versa.

The absence in plasticity of the overall uniqueness

which holds in elasticity is closely connected with the impossi-

bility of such paths for the real or for a reversible pseudo-

material. Given any finite change in Tit for example from zero)

it might be thought uniqueness could be shown as in elasticity

through an inequality like (8) in which the primes are dropped.

The point is that in general, and there are exceptions, it is

not possible to change strain state b to state a by going from

stress state b to a along a path for which the virtual work term

a~ij- bd ij] e ij - brij has the same -sin as the actual

positive work done by the external agency,
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Incrementally Non-linear Stress-strain Relations

Returning now to the infinitesimal changes and the

uniqueness problem of plasticity it is clear what to do in the

non-linear cases, Stresses and strains represented by a cannot

be reached directly from b nor vice versa but inequality (8) can

be satisfied. At a smooth point, Fig. 4c, it is sufficient to

have the plastic strain rate a monotonically increasing function

of the normal component of 0iJf This is a reasonable form of

tress-strain relation and would undoubtedly be chosen should

the occasion arise to use the elaborate non-linear forms.

At a corner, even one of very complicated nature, the

necessary restrictions are reasonable also. If, for example, a

number of non-linear mechanisms of flow are assumed, each may be

taken to satisfy the rule for a smooth point as just given.

Again although the stress path from a to b cannot produce the

corresponding strain difference, inequaltiy (8) is satisfied and

uniquenezs established.

Perfectly Plastic Bodies [11]

As has been stated, the problem of stability of solution

and of uniqueness are essential.ly the same for elastic-perfectly

plastic bodies. The definition of perfect plasticity does there-

fore, assure uniqueness. A conventional type of proof is sketched

below for comparison.

The yield surface fr ideally or perfectly plastic

material is fixed in stress space. The state of stress cannot

be outside the yicld surface and plastic deformation occurs only
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when the stress point is on the surface, Normality holds at a

smooth point and extended normality applies at a corner. Con-

sidering a corner as representing the sum of independent

mechanisms, the normality condition applies to each independent

yield curve and there need be no distinction in the treatment

of the two cases. Although the plastic term in expression (4)
a b lj

may be zero, the elastic is always positive unless aij C

Uniqueness, in this sense, is established for the elastic-plastic

case but not for the rigid-plastic where the elastic term is

identically zero at all times,

Tresca Yield Criterion and Mises Flow Rule

It has sometimes seemed convenient to adopt a maximum

shearing stress criterion of yield and to couple it with the

Mises flow rule, Fig. 5, in solving problums in perfect plasti-

city. The deviation of e from the normal to the yield surface

is the significant feature. It means that in a cycle work can

be extracted from the material and the system of forces acting

upon it. This violation of the fundamental postulate would

seem to imply a lack of uniqueness which in turn casts some

doubt on the validity of solutions obtained by such starting

assumptions. In terms of the usual uniqueness proof, expression

(4) can be made negative, Although the findamental postulate

or equivalently the positive definiteness of (4) provide suffi-

cient conditions for iuiiquenois, their necessity does not follow.

It miight be true for all problems that a negative value of (4)

or of work done by the external agency in one region of the



Al.-116 14

body would be more than balanced by positive values elsewhere,

Proofs of necessity are difficult and often tied in with

questions of existence of solutions. Such a proof will not be

given. The following demonstration by means of a particular

solution will serve to show lack of uniqueness for the material

of Fig. 5 and make necessity quite plausible.

Consider a tube with a very thin wall subjected to

interior pressure p and acted upon by an axial elastic spring

under tension F and by a compressive force T which relieve some

of the axial stress induced by the interior pressure, Fig, 6.

The stress point will be taken as point S, Fig. 5. Instability

or lack of uniqueness shows up immediately. Consider a com-

pressive surface traction rate T * Equilibrium, compatibility

and stress-strain relations are satisfied by a purely elastic

decrease in height. Both the spring force and the axial ter 3ion

in the tube wall would then decrease. If plastic deformation

is assumed to occur, the situation is quite different. The

plastic strain in the tube has a component of axial compression,

This shortening of the tube can decrease the force in the spring

to any desired extent and so increase the axial tension in the

tube. It is easily seen that the lack of uniqueness is equivalent

to an instability of solution. At T = 0, as plastic deformation

takes place, the force in the spring continues to drop as the

axial tension builds up in the tube until the strain rate vector

has no axial component.

This lack of uni.qucness does not occur if the fundamental

definition of perfect plasticity is adherod to. The flow rule
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appropriate to the Tresca yield criterion gives a normal plastic

strain rate vector which has no horizontal component at S. Work
I pcannot be extracted; d j 4i cannot be negative as in Fig. 5; T'

produces the unique result that F and the axial stress in the

tube decrease elastically.

It might well be argued that the example of Fig. 6 is

not a good one because the change in tube diameter, which has

been ignored, will increase the stress and there is an instability

in this sense. However) in principlo at leastt the stresses

could be set up in a flat sheet to obviate this trouble, It is

the possibility of work extraction represented by the anglo

between the plastic strain rate vector and the normal to the

yield surface which is responsible for the instability or lack

of uniqueness.
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